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Abstract. We consider diffusion on substrates with frozen disorder. While in the ordered state
the moving particle always meets the same energy barrier, in the amorphous state there is a fairly
broad distribution of the height of the barriers. The effective activation energyEeff that controls
the diffusion process is not equal to the average activation energy barrier. In fact,Eeff is the
highest barrier that the moving particle must overcome. In this wayEeff can be determined by
solving a particular percolation problem. The threshold concentration depends on the length of the
percolating cluster. Consequently,Eeff is also size dependent. So it is shown that the diffusion
coefficient depends on the distance of diffusion. The determination of the effective activation
energy from the slope of the Arrhenius plot of the diffusion coefficient is misleading. The mean
diffusion distanceλ decreases strongly with temperature.

Introduction

The aim of the present contribution is to investigate the temperature dependence of some
parameters important for surface diffusion on amorphous substrates. It is also demonstrated
that, because of the disorder, the diffusion coefficient becomes distance dependent:D = D(L).
We investigate the diffusion coefficientD and the mean diffusion distanceλ. The latter depends
on the average desorption timeτdes (see [1, 2]) as

λ =
√
Dτdes (1)

where the diffusion coefficientD depends on the intermolecular distanced and is inversely
proportional to the average jump timeτ :

D = d2

2τ
. (2)

The two above-mentioned characteristic times depend, as usual, on the activation energies of
desorption and of surface diffusion respectively:

τdes = τ0 exp

(
Edes

kT

)
τ = τ0 exp

(
Eeff

kT

)
. (3)

The temperature dependence ofλ is easily obtained from equations (1)–(3) in the form

λ = d√
2

exp

[
Edes − Eeff

2kT

]
. (4)

SinceEdes > Eeff (T ) it follows thatλ decreases with temperature. Note that, because of the
disorder, the effective activation energy for surface diffusionEeff = Eeff (T ) is temperature
dependent, so no straight line is expected in an Arrhenius plot (lnλ versus 1/T ). The reasons
for the temperature dependence ofEeff (T ) are discussed below.
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The model

Any particle that moves much faster than the main building units of the system meets a state [3]
of ‘static disorder’. There are channels of motion along which the barriers appear according to a
given distribution functionf (E) determined by the structure of the substrate. The successive
jumps are strongly correlated and the motion from the origin to a distant area is a typical
percolation theory problem.

Earlier [3, 4], it was proposed that one could define the activation energy that determines
the rate of this process as the upper limitEc of the integral∫ Ep

0
f (E) dE = p∞c (5)

where the threshold concentrationp∞c depends on the numbern of escape channels and on the
space dimension1. There have been (see for instance [5]) a number of estimations ofp∞c .
Here we use the formula

p∞c =
1

(1− 1)n
. (6)

The probability distribution functionf (E) representing the probability that a channel has
barrier of height betweenE andE + dE is normalized according to∫ ∞

0
f (E) dE = 1. (7)

The surface diffusion is a two-dimensional case,1 = 2, sopc = 2/n.
It can be shown (for details, see the appendix) that the upper limitEp is

Ep = Emax − aσ (8)

whereσ is the dispersity of the probability distribution functionf (E) and the dimensionless
parametera is between 0.4 and 1.

Strictly speaking, the mean jump timeτ is

τ(Eeff ) =
∫ Ep

0
f (E)τ(E) dE. (9)

It can be shown that the approximationEeff ≈ Ep is sufficiently accurate for the purposes of
the present investigation.

It is known (see [5]) that the thresholdpc(L) depends on the lengthL of the percolating
cluster. Here we adopt the approximation

pc(L) = p∞c
[
1−

(
d

L

)ν]
(10)

that follows straightforwardly from the discussion on this problem given in [5]. The power
ν depends on the dimensionality1 of the space,ν ' 0.74 for1 = 2. It is seen that the
percolation threshold for diffusion to a distance of 10d is only about 80% ofp∞c . The effective
activation energyEeff (L) for diffusion to a distanceL can be determined by analogy with
equation (10) as

Eeff (L) = Emax − aσ + σ ln

[
1−

(
d

L

)ν]
. (11)

It is seen that the diffusion coefficient is both temperature dependent (throughσ ) and distance
dependent. The combination of equations (2), (3) and (11) yields

D(L) = D∞
[
1−

(
d

L

)ν]−σ/kT
(12)
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whereD∞ = D(L→∞) stands for

D∞ = d2

2τ0
exp

{
−Emax − aσ

kT

}
. (13)

Temperature dependence ofσ

There is a strong relationship between the entropyS and the dispersityσ of the system:

σ = σr exp

[
2(S − Sg)
ZR

]
. (14)

Hereσg is the dispersity at the reference state with entropySg andZ is the whole number
of escape channels in the bulk of the system (please note that it is larger than the number
of channels along the surface of the substrate,Z > n). One can easily express the entropy
dependence ofEeff by combining equations (14) and (13). It is useful to choose for the
reference state the glass transition temperatureTg. The temperature dependence of the entropy
is

S(T , P )− Sg =
∫ T

Tr

Cp d ln T̃ ≈ Cp ln
T

Tg
. (15)

The dispersityσ is expressed through equations (14) and (15) as

σ = σg
(
T

Tg

)β
(16)

whereβ is proportional to the ratio of the heat capacityCp and the gas constantR:

β = 2Cp
ZR
≈ 0.2

Cp

R
. (17)

With this notation the diffusion coefficient becomes

lnD = ln

(
d2

2τ0

)
−
[[
Emax

Tg

T
− σg

{
a − ln

[
1−

(
d

L

)ν]}(
T

Tg

)β−1]]
(kTg)

−1. (18)

The final expression for the mean diffusion distanceλ is

λ = d√
2

exp

〈
Edes

2kTg

〈[
1− Emax

Edes

]
−
[[
σg

{
a − ln

[
1−

(
d

L

)ν]}(
T

Tg

)β]]
(kTg)

−1

〉
Tg

T

〉
.

(19)

Discussion

Figure 1 shows the dependence of the diffusion coefficient on distance (in units ofd) for a
typical dispersity valueσ/kT = 10 (solid curve) and forσ/kT = 1 (dashed curve). In both
casesν = 74. It is seen that diffusion proceeds much faster at short distances. This could
be of importance for steps interacting on a substrate, for nucleation processes etc. Results
giving an indication that motion over a short distance differs from the diffusive regime over
long distances were reported earlier in [6, 7], although the reasoning there was different from
the arguments presented here.

It is a common assumption that the activation energy for surface diffusion on amorphous
substrates is not temperature dependent. This is why it is determined, usually, from the slope
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Figure 1. The dependence of the diffusion coefficient on distance. Solid curve:σ/(kT ) = 10;
dashed curve:σ/(kT ) = 1.

SL of the Arrhenius plot of the diffusion coefficient:

SL ≡ ∂ lgD

∂(1/T )
= −Emax

2.3k

〈
1− σg

Emax
(1− β)

[[{
a − ln

[
1−

(
d

L

)ν]}(
T

Tg

)β]]
(kTg)

−1

〉
.

(20)

It is seen that a straight line is expected only forβ = 1. Moreover, even in this case the slope
SL will be Emax , not the effective activation energyEeff . This is why the activation energy
is, usually, overestimated and an incorrect value of the pre-exponential constant is assumed
in order to obtain an appropriate value of the diffusion coefficient. Figure 2 represents, in
Arrhenius coordinates, the temperature dependence of diffusion coefficientD (in arbitrary
units) for β = 1, β = 2 andβ = 4. Although the curvature is not easy to discern
experimentally, the value ofβ plays an important role. At high temperatures there is an increase
of the slope withβ. If not accounted for, this could cause an additional overestimation of the
effective activation energy.

There is an important difference between the diffusion and self-diffusion processes. In
the case of self-diffusion all particles move with comparable rates. So, if a tracer meets energy
barriers that are too high, it does not need to overcome any of them. After a given time the
configuration is changed because the surrounding particles have moved. In this case it seems
more reasonable to average over the jump frequencies. So, the high frequencies (low energy
barriers) dominate. On the other hand, in the case of diffusion through a frozen system the
particle inevitably needs to overcome some barriers in order to percolate. The correct way to
proceed is to average over the jump times.

The financial support of the Copernicus Programme (Contract No IC15-CT96-0821) as well
as the support of the Bulgarian Ministry of Education, Science and Technologies is much
appreciated.
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Figure 2. The temperature dependence of the diffusion coefficientD. The parameterβ is given
for each curve. The curves are drawn forEmax/k = 30 000 andσg/k = 10 000.

Appendix

Under the assumption thatf (E) is described as Poissonian distribution

f (E) = exp

(
E − Emax

σ

){
σ

[
1− exp

(
−Emax

σ

)]}−1

equation (1) becomes[
exp

(
Ec − Emax

σ

)
− exp

(
−Emax

σ

)]/[
1− exp

(
−Emax

σ

)]
= p∞c (A.1)

whereσ is the dispersity of the system. Equation (A.1) can be simplified considerably; for
Emax/σ � 1 it becomes

exp

(
Ec − Emax

σ

)
≈ p∞c . (A.2)

This means that the effective activation energyEeff that controls the process of surface diffusion
is determined as

E∞eff = Emax + σ lnp∞c = Emax − aσ (A.3)

wherea = − lnp∞c = ln(n/2).
Most frequently, the number of escape channels along an amorphous surface is between

5 and 6, soa ≈ 1. A similar result is easily obtained for Gaussian distributions, only in this
casea ≈ 0.4.
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